Logarithms

Logarithms are the true inverses of exponents, and follow the relation:

y=axx=loga(x)y=a^{x} \Leftrightarrow x=\log_{a}{(x)}

For the special value, Euler’s number, we have the natural logarithm:

y=exx=ln(y)y=e^{x} \Leftrightarrow x = \ln{(y)}

For positive values of xx and yy, and when a>0a>0 and a1a\neq1:

loga(xy)=logax+logay\log_{a}{(xy)}=\log_{a}{x}+\log_{a}{y} loga(xy)=logaxlogay\log_{a}{\left(\frac{x}{y}\right)}=\log_{a}{x}-\log_{a}{y} loga(x)n=nlogax\log_{a}{(x)}^{n}=n\log_{a}{x}